Artificial Intelligence with Python

Filename: artificial-intelligence-with-python.pdf
ISBN: 178646439X
Release Date: 2017-04-28
Number of pages: 521
Author: Prateek Joshi
Publisher:

Download and read online Artificial Intelligence with Python in PDF and EPUB Build real-world AI applications with Python to intelligently interact with your surroundingsAbout This Book* Step into the amazing world of intelligent apps using this comprehensive guide* Enter the world of AI, explore it, and become independent to create your own AI apps* Work through simple yet insightful examples that will get you up and running with artificial intelligence in no timeWho This Book Is ForThis book is for Python developers who want to build real-world AI applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to implement AI techniques in their existing technology stacks.What You Will Learn* Find out how to use different classification and regression techniques* Understand the concept of clustering and how to use it to automatically segment data* See how to build an intelligent recommender system* Understand logic programming and how to use it* Develop automatic speech recognition systems* Understand the basics of heuristic search and genetic programming* Develop an understanding of reinforcement learning* Discover how to build AI applications centered on images, text, and time series data* Understand how to use deep learning algorithms and build applications based on itIn DetailAI is becoming increasingly relevant in the modern world where the ecosystem is driven by technology and data. AI is used extensively across many fields such as robotics, computer vision, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various AI algorithms that can be used to build various applications.During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of the AI concepts, you will learn how to develop the various building blocks of AI using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application based on images, text, stock market, or some other form of data, this exciting book on AI will definitely guide you all the way!


Artificial Intelligence

Filename: artificial-intelligence.pdf
ISBN: 1537600311
Release Date: 2016-09-10
Number of pages: 626
Author: Stuart Russell
Publisher: Createspace Independent Publishing Platform

Download and read online Artificial Intelligence in PDF and EPUB Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.


Artificial Intelligence

Filename: artificial-intelligence.pdf
ISBN: 1292153962
Release Date: 2016-05-05
Number of pages: 1152
Author: Stuart Russell
Publisher:

Download and read online Artificial Intelligence in PDF and EPUB For one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence.


Beginning Artificial Intelligence with the Raspberry Pi

Filename: beginning-artificial-intelligence-with-the-raspberry-pi.pdf
ISBN: 9781484227435
Release Date: 2017-07-08
Number of pages: 369
Author: Donald J. Norris
Publisher: Apress

Download and read online Beginning Artificial Intelligence with the Raspberry Pi in PDF and EPUB Gain a gentle introduction to the world of Artificial Intelligence (AI) using the Raspberry Pi as the computing platform. Most of the major AI topics will be explored, including expert systems, machine learning both shallow and deep, fuzzy logic control, and more! AI in action will be demonstrated using the Python language on the Raspberry Pi. The Prolog language will also be introduced and used to demonstrate fundamental AI concepts. In addition, the Wolfram language will be used as part of the deep machine learning demonstrations. A series of projects will walk you through how to implement AI concepts with the Raspberry Pi. Minimal expense is needed for the projects as only a few sensors and actuators will be required. Beginners and hobbyists can jump right in to creating AI projects with the Raspberry PI using this book. What You'll Learn What AI is and—as importantly—what it is not Inference and expert systems Machine learning both shallow and deep Fuzzy logic and how to apply to an actual control system When AI might be appropriate to include in a system Constraints and limitations of the Raspberry Pi AI implementation Who This Book Is For Hobbyists, makers, engineers involved in designing autonomous systems and wanting to gain an education in fundamental AI concepts, and non-technical readers who want to understand what AI is and how it might affect their lives.


Python Machine Learning

Filename: python-machine-learning.pdf
ISBN: 9781783555147
Release Date: 2015-09-23
Number of pages: 454
Author: Sebastian Raschka
Publisher: Packt Publishing Ltd

Download and read online Python Machine Learning in PDF and EPUB Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.


Python Machine Learning Cookbook

Filename: python-machine-learning-cookbook.pdf
ISBN: 9781786467683
Release Date: 2016-06-23
Number of pages: 304
Author: Prateek Joshi
Publisher: Packt Publishing Ltd

Download and read online Python Machine Learning Cookbook in PDF and EPUB 100 recipes that teach you how to perform various machine learning tasks in the real world About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide Learn about perceptrons and see how they are used to build neural networks Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques Who This Book Is For This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code. What You Will Learn Explore classification algorithms and apply them to the income bracket estimation problem Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Explore data visualization techniques to interact with your data in diverse ways Find out how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Analyze stock market data using Conditional Random Fields Work with image data and build systems for image recognition and biometric face recognition Grasp how to use deep neural networks to build an optical character recognition system In Detail Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. Style and approach You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.


Paradigms of Artificial Intelligence Programming

Filename: paradigms-of-artificial-intelligence-programming.pdf
ISBN: 9780080571157
Release Date: 2014-06-28
Number of pages: 946
Author: Peter Norvig
Publisher: Morgan Kaufmann

Download and read online Paradigms of Artificial Intelligence Programming in PDF and EPUB Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts. The author strongly emphasizes the practical performance issues involved in writing real working programs of significant size. Chapters on troubleshooting and efficiency are included, along with a discussion of the fundamentals of object-oriented programming and a description of the main CLOS functions. This volume is an excellent text for a course on AI programming, a useful supplement for general AI courses and an indispensable reference for the professional programmer.


Large Scale Machine Learning with Python

Filename: large-scale-machine-learning-with-python.pdf
ISBN: 9781785888021
Release Date: 2016-08-03
Number of pages: 420
Author: Bastiaan Sjardin
Publisher: Packt Publishing Ltd

Download and read online Large Scale Machine Learning with Python in PDF and EPUB Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.


Learning Robotics Using Python

Filename: learning-robotics-using-python.pdf
ISBN: 9781783287543
Release Date: 2015-05-27
Number of pages: 330
Author: Lentin Joseph
Publisher: Packt Publishing Ltd

Download and read online Learning Robotics Using Python in PDF and EPUB If you are an engineer, a researcher, or a hobbyist, and you are interested in robotics and want to build your own robot, this book is for you. Readers are assumed to be new to robotics but should have experience with Python.


Introduction to Machine Learning with Python

Filename: introduction-to-machine-learning-with-python.pdf
ISBN: 9781449369897
Release Date: 2016-09-26
Number of pages: 394
Author: Andreas C. Müller
Publisher: "O'Reilly Media, Inc."

Download and read online Introduction to Machine Learning with Python in PDF and EPUB Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills


Natural Language Processing with Python

Filename: natural-language-processing-with-python.pdf
ISBN: 9780596555719
Release Date: 2009-06-12
Number of pages: 504
Author: Steven Bird
Publisher: "O'Reilly Media, Inc."

Download and read online Natural Language Processing with Python in PDF and EPUB This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.


Programming Collective Intelligence

Filename: programming-collective-intelligence.pdf
ISBN: 9780596550684
Release Date: 2007-08-16
Number of pages: 362
Author: Toby Segaran
Publisher: "O'Reilly Media, Inc."

Download and read online Programming Collective Intelligence in PDF and EPUB Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect


High Performance Python

Filename: high-performance-python.pdf
ISBN: 9781449361778
Release Date: 2014-08-22
Number of pages: 370
Author: Micha Gorelick
Publisher: "O'Reilly Media, Inc."

Download and read online High Performance Python in PDF and EPUB Your Python code may run correctly, but you need it to run faster. By exploring the fundamental theory behind design choices, this practical guide helps you gain a deeper understanding of Python’s implementation. You’ll learn how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. How can you take advantage of multi-core architectures or clusters? Or build a system that can scale up and down without losing reliability? Experienced Python programmers will learn concrete solutions to these and other issues, along with war stories from companies that use high performance Python for social media analytics, productionized machine learning, and other situations. Get a better grasp of numpy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on a local or remote cluster Solve large problems while using less RAM


Machine Learning in Python

Filename: machine-learning-in-python.pdf
ISBN: 9781118961742
Release Date: 2015-03-30
Number of pages: 336
Author: Michael Bowles
Publisher: John Wiley & Sons

Download and read online Machine Learning in Python in PDF and EPUB This book shows readers how they can successfully analyze data using only two core machine learning algorithms---and how to do so using the popular Python programming language. These algorithms deal with common scenarios faced by all data analysts and data scientists. This book focuses on two algorithm families (linear methods and ensemble methods) that effectively predict outcomes. This type of problem covers a multitude of use cases (what ad to place on a web page, predicting prices in securities markets, detecting credit card fraud, etc.). The focus on two families gives enough room for full descriptions of the mechanisms at work in the algorithms. Then the code examples serve to illustrate the workings of the machinery with specific hackable code. The author will explain in simple terms, using no complex math, how these algorithms work, and will then show how to apply them in Python. He will also provide advice on how to select from among these algorithms, and will show how to prepare the data, and how to use the trained models in practice. The author begins with an overview of the two core algorithms, explaining the types of problems solved by each one. He then introduces a core set of Python programming techniques that can be used to apply these algorithms. The author shows various techniques for building predictive models that solve a range of problems, from simple to complex; he also shows how to measure the performance of each model to ensure you use the right one. The following chapters provide a deep dive into each of the two algorithms: penalized linear regression and ensemble methods. Chapters will show how to apply each algorithm in Python. Readers can directly use the sample code to build their own solutions.


Building Machine Learning Systems with Python Second Edition

Filename: building-machine-learning-systems-with-python-second-edition.pdf
ISBN: 9781784392888
Release Date: 2015-03-26
Number of pages: 326
Author: Luis Pedro Coelho
Publisher: Packt Publishing Ltd

Download and read online Building Machine Learning Systems with Python Second Edition in PDF and EPUB This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.