Python Machine Learning

Filename: python-machine-learning.pdf
ISBN: 9781783555147
Release Date: 2015-09-23
Number of pages: 454
Author: Sebastian Raschka
Publisher: Packt Publishing Ltd

Download and read online Python Machine Learning in PDF and EPUB Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Machine Learning

Filename: machine-learning.pdf
ISBN: 1558602518
Release Date: 1994
Number of pages: 782
Author: Ryszard S. Michalski
Publisher: Morgan Kaufmann

Download and read online Machine Learning in PDF and EPUB Multistrategy learning is one of the newest and most promising research directions in the development of machine learning systems. The objectives of research in this area are to study trade-offs between different learning strategies and to develop learning systems that employ multiple types of inference or computational paradigms in a learning process. Multistrategy systems offer significant advantages over monostrategy systems. They are more flexible in the type of input they can learn from and the type of knowledge they can acquire. As a consequence, multistrategy systems have the potential to be applicable to a wide range of practical problems. This volume is the first book in this fast growing field. It contains a selection of contributions by leading researchers specializing in this area. See below for earlier volumes in the series.

Machine Learning

Filename: machine-learning.pdf
ISBN: 9780262018029
Release Date: 2012-08-24
Number of pages: 1067
Author: Kevin P. Murphy
Publisher: MIT Press

Download and read online Machine Learning in PDF and EPUB A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Bayesian Reasoning and Machine Learning

Filename: bayesian-reasoning-and-machine-learning.pdf
ISBN: 9780521518147
Release Date: 2012-02-02
Number of pages: 697
Author: David Barber
Publisher: Cambridge University Press

Download and read online Bayesian Reasoning and Machine Learning in PDF and EPUB A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Machine Learning

Filename: machine-learning.pdf
ISBN: 0070428077
Release Date: 1997-03-01
Number of pages: 414
Author: Tom Michael Mitchell
Publisher: McGraw-Hill Science/Engineering/Math

Download and read online Machine Learning in PDF and EPUB Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Machine Learning

Filename: machine-learning.pdf
ISBN: 9780262529518
Release Date: 2016-10-07
Number of pages: 224
Author: Ethem Alpaydin
Publisher: MIT Press

Download and read online Machine Learning in PDF and EPUB A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.

Introduction to Machine Learning

Filename: introduction-to-machine-learning.pdf
ISBN: 9780262028189
Release Date: 2014-08-29
Number of pages: 640
Author: Ethem Alpaydin
Publisher: MIT Press

Download and read online Introduction to Machine Learning in PDF and EPUB The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Understanding Machine Learning

Filename: understanding-machine-learning.pdf
ISBN: 9781107057135
Release Date: 2014-05-19
Number of pages: 409
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press

Download and read online Understanding Machine Learning in PDF and EPUB Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Machine Learning for Hackers

Filename: machine-learning-for-hackers.pdf
ISBN: 9781449330538
Release Date: 2012-02-13
Number of pages: 324
Author: Drew Conway
Publisher: "O'Reilly Media, Inc."

Download and read online Machine Learning for Hackers in PDF and EPUB If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data

Machine Learning

Filename: machine-learning.pdf
ISBN: 9783540794523
Release Date: 2008-09-24
Number of pages: 169
Author: Kai-Zhu Huang
Publisher: Springer Science & Business Media

Download and read online Machine Learning in PDF and EPUB Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves as roadmap in various models, but – more importantly – it also motivates a theory that can learn from data both locally and globally. This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field. The book reviews current topics,new theories and applications. Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong. Haiqin Yang leads the image processing group at HiSilicon Technologies. Irwin King and Michael R. Lyu are professors at the Computer Science and Engineering department of the Chinese University of Hong Kong.

Dataset Shift in Machine Learning

Filename: dataset-shift-in-machine-learning.pdf
ISBN: UOM:39015080846309
Release Date: 2009
Number of pages: 229
Author: Joaquin Quiñonero-Candela
Publisher: Mit Press

Download and read online Dataset Shift in Machine Learning in PDF and EPUB An overview of recent efforts in the machine learning community to deal with datasetand covariate shift, which occurs when test and training inputs and outputs have differentdistributions.

The Computational Complexity of Machine Learning

Filename: the-computational-complexity-of-machine-learning.pdf
ISBN: 0262111527
Release Date: 1990
Number of pages: 165
Author: Michael J. Kearns
Publisher: MIT Press

Download and read online The Computational Complexity of Machine Learning in PDF and EPUB We also give algorithms for learning powerful concept classes under the uniform distribution, and give equivalences between natural models of efficient learnability. This thesis also includes detailed definitions and motivation for the distribution-free model, a chapter discussing past research in this model and related models, and a short list of important open problems."

Machine Learning with Spark

Filename: machine-learning-with-spark.pdf
ISBN: 9781783288526
Release Date: 2015-02-20
Number of pages: 338
Author: Nick Pentreath
Publisher: Packt Publishing Ltd

Download and read online Machine Learning with Spark in PDF and EPUB If you are a Scala, Java, or Python developer with an interest in machine learning and data analysis and are eager to learn how to apply common machine learning techniques at scale using the Spark framework, this is the book for you. While it may be useful to have a basic understanding of Spark, no previous experience is required.

Introduction to Machine Learning with Python

Filename: introduction-to-machine-learning-with-python.pdf
ISBN: 9781449369897
Release Date: 2016-09-26
Number of pages: 394
Author: Andreas C. Müller
Publisher: "O'Reilly Media, Inc."

Download and read online Introduction to Machine Learning with Python in PDF and EPUB Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills

Machine Learning

Filename: machine-learning.pdf
ISBN: 9781118889497
Release Date: 2014-10-20
Number of pages: 408
Author: Jason Bell
Publisher: John Wiley & Sons

Download and read online Machine Learning in PDF and EPUB Dig deep into the data with a hands-on guide to machine learning Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.